308 research outputs found

    Variables governing emotion and decision-making: human objectivity underlying its subjective perception

    Get PDF
    This article accompanies a poster presentation on the variables governing emotion and decision-making

    Mathematically Gifted Adolescents Have Deficiencies in Social Valuation and Mentalization

    Get PDF
    Many mathematically gifted adolescents are characterized as being indolent, underachieving and unsuccessful despite their high cognitive ability. This is often due to difficulties with social and emotional development. However, research on social and emotional interactions in gifted adolescents has been limited. The purpose of this study was to observe differences in complex social strategic behaviors between gifted and average adolescents of the same age using the repeated Ultimatum Game. Twenty-two gifted adolescents and 24 average adolescents participated in the Ultimatum Game. Two adolescents participate in the game, one as a proposer and the other as a responder. Because of its simplicity, the Ultimatum Game is an apt tool for investigating complex human emotional and cognitive decision-making in an empirical setting. We observed strategic but socially impaired offers from gifted proposers and lower acceptance rates from gifted responders, resulting in lower total earnings in the Ultimatum Game. Thus, our results indicate that mathematically gifted adolescents have deficiencies in social valuation and mentalization

    Are women better mindreaders? Sex differences in neural correlates of mentalizing detected with functional MRI

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability to mentalize, i.e. develop a Theory of Mind (ToM), enables us to anticipate and build a model of the thoughts, emotions and intentions of others. It has long been hypothesised that women differ from men in their mentalizing abilities. In the present fMRI study we examined the impact of (1) gender (women vs. men) and (2) game partner (human vs. computer) on ToM associated neural activity in the medial prefrontal cortex. Groups of men (n = 12) and women (n = 12) interacted in an iterated classical prisoner's dilemma forced choice situation with alleged human and computer partners who were outside the scanner.</p> <p>Results</p> <p>Both the conditions of playing against putative human as well as computer partners led to activity increases in mPFC, ACC and rTPJ, constituting the classic ToM network. However, mPFC/ACC activity was more pronounced when participants believed they were playing against the alleged human partner. Differences in the medial frontal lobe activation related to the sex of the participants could be demonstrated for the human partner > computer partner contrast.</p> <p>Conclusion</p> <p>Our data demonstrate differences in medial prefrontal brain activation during a ToM task depending on both the gender of participants and the game partner.</p

    Rejection of Unfair Offers Can Be Driven by Negative Emotions, Evidence from Modified Ultimatum Games with Anonymity

    Get PDF
    The rejection of unfair offers can be affected by both negative emotions (e.g. anger and moral disgust) and deliberate cognitive processing of behavioral consequences (e.g. concerns of maintaining social fairness and protecting personal reputation). However, whether negative emotions are sufficient to motivate this behavior is still controversial. With modified ultimatum games, a recent study (Yamagishi T, et al. (2009) Proc Natl Acad Sci USA 106∶11520–11523) found that people reject unfair offers even when this behavior increases inequity, and even when they could not communicate to the proposers. Yamagishi suggested that rejection of unfair offers could occurr without people’s concerning of maintaining social fairness, and could be driven by negative emotions. However, as anonymity was not sufficiently guaranteed in Yamagishi’s study, the rejection rates in their experiments may have been influenced by people’s concerns of protecting personal reputation (reputational concerns) in addition to negative emotions; thus, it was unclear whether the rejection was driven by negative emotions, or by reputational concerns, or both. In the present study, with specific methods to ensure anonymity, the effect of reputational concerns was successfully ruled out. We found that in a private situation in which rejection could not be driven by reputational concerns, the rejection rates of unfair offers were significantly larger than zero, and in public situations in which rejection rates could be influenced by both negative emotions and reputational concerns, rejection rates were significantly higher than that in the private situation. These results, together with Yamagishi’s findings, provided more complete evidence suggesting (a) that the rejection of unfair offers can be driven by negative emotions and (b) that deliberate cognitive processing of the consequences of the behavior can increase the rejection rate, which may benefit social cooperation

    Working Together May Be Better: Activation of Reward Centers during a Cooperative Maze Task

    Get PDF
    Humans use theory of mind when predicting the thoughts and feelings and actions of others. There is accumulating evidence that cooperation with a computerized game correlates with a unique pattern of brain activation. To investigate the neural correlates of cooperation in real-time we conducted an fMRI hyperscanning study. We hypothesized that real-time cooperation to complete a maze task, using a blind-driving paradigm, would activate substrates implicated in theory of mind. We also hypothesized that cooperation would activate neural reward centers more than when participants completed the maze themselves. Of interest and in support of our hypothesis we found left caudate and putamen activation when participants worked together to complete the maze. This suggests that cooperation during task completion is inherently rewarding. This finding represents one of the first discoveries of a proximate neural mechanism for group based interactions in real-time, which indirectly supports the social brain hypothesis

    Can Machines Think? Interaction and Perspective Taking with Robots Investigated via fMRI

    Get PDF
    Krach S, Hegel F, Wrede B, Sagerer G, Binkofski F, Kircher T. Can Machines Think? Interaction and Perspective Taking with Robots Investigated via fMRI. PLoS ONE. 2008;3(7): e2597.Background When our PC goes on strike again we tend to curse it as if it were a human being. Why and under which circumstances do we attribute human-like properties to machines? Although humans increasingly interact directly with machines it remains unclear whether humans implicitly attribute intentions to them and, if so, whether such interactions resemble human-human interactions on a neural level. In social cognitive neuroscience the ability to attribute intentions and desires to others is being referred to as having a Theory of Mind (ToM). With the present study we investigated whether an increase of human-likeness of interaction partners modulates the participants' ToM associated cortical activity. Methodology/Principal Findings By means of functional magnetic resonance imaging (subjects n = 20) we investigated cortical activity modulation during highly interactive human-robot game. Increasing degrees of human-likeness for the game partner were introduced by means of a computer partner, a functional robot, an anthropomorphic robot and a human partner. The classical iterated prisoner's dilemma game was applied as experimental task which allowed for an implicit detection of ToM associated cortical activity. During the experiment participants always played against a random sequence unknowingly to them. Irrespective of the surmised interaction partners' responses participants indicated having experienced more fun and competition in the interaction with increasing human-like features of their partners. Parametric modulation of the functional imaging data revealed a highly significant linear increase of cortical activity in the medial frontal cortex as well as in the right temporo-parietal junction in correspondence with the increase of human-likeness of the interaction partner (computer<functional robot<anthropomorphic robot<human). Conclusions/Significance Both regions correlating with the degree of human-likeness, the medial frontal cortex and the right temporo-parietal junction, have been associated with Theory-of-Mind. The results demonstrate that the tendency to build a model of another's mind linearly increases with its perceived human-likeness. Moreover, the present data provides first evidence of a contribution of higher human cognitive functions such as ToM in direct interactions with artificial robots. Our results shed light on the long-lasting psychological and philosophical debate regarding human-machine interaction and the question of what makes humans being perceived as human

    Predicting Decisions in Human Social Interactions Using Real-Time fMRI and Pattern Classification

    Get PDF
    Negotiation and trade typically require a mutual interaction while simultaneously resting in uncertainty which decision the partner ultimately will make at the end of the process. Assessing already during the negotiation in which direction one's counterpart tends would provide a tremendous advantage. Recently, neuroimaging techniques combined with multivariate pattern classification of the acquired data have made it possible to discriminate subjective states of mind on the basis of their neuronal activation signature. However, to enable an online-assessment of the participant's mind state both approaches need to be extended to a real-time technique. By combining real-time functional magnetic resonance imaging (fMRI) and online pattern classification techniques, we show that it is possible to predict human behavior during social interaction before the interacting partner communicates a specific decision. Average accuracy reached approximately 70% when we predicted online the decisions of volunteers playing the ultimatum game, a well-known paradigm in economic game theory. Our results demonstrate the successful online analysis of complex emotional and cognitive states using real-time fMRI, which will enable a major breakthrough for social fMRI by providing information about mental states of partners already during the mutual interaction. Interestingly, an additional whole brain classification across subjects confirmed the online results: anterior insula, ventral striatum, and lateral orbitofrontal cortex, known to act in emotional self-regulation and reward processing for adjustment of behavior, appeared to be strong determinants of later overt behavior in the ultimatum game. Using whole brain classification we were also able to discriminate between brain processes related to subjective emotional and motivational states and brain processes related to the evaluation of objective financial incentives

    Topography of the Chimpanzee Corpus Callosum

    Get PDF
    The corpus callosum (CC) is the largest commissural white matter tract in mammalian brains, connecting homotopic and heterotopic regions of the cerebral cortex. Knowledge of the distribution of callosal fibers projecting into specific cortical regions has important implications for understanding the evolution of lateralized structures and functions of the cerebral cortex. No comparisons of CC topography in humans and great apes have yet been conducted. We investigated the topography of the CC in 21 chimpanzees using high-resolution magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). Tractography was conducted based on fiber assignment by continuous tracking (FACT) algorithm. We expected chimpanzees to display topographical organization similar to humans, especially concerning projections into the frontal cortical regions. Similar to recent studies in humans, tractography identified five clusters of CC fibers projecting into defined cortical regions: prefrontal; premotor and supplementary motor; motor; sensory; parietal, temporal and occipital. Significant differences in fractional anisotropy (FA) were found in callosal regions, with highest FA values in regions projecting to higher-association areas of posterior cortical (including parietal, temporal and occipital cortices) and prefrontal cortical regions (p<0.001). The lowest FA values were seen in regions projecting into motor and sensory cortical areas. Our results indicate chimpanzees display similar topography of the CC as humans, in terms of distribution of callosal projections and microstructure of fibers as determined by anisotropy measures

    Sexual Selection and the Evolution of Brain Size in Primates

    Get PDF
    Reproductive competition among males has long been considered a powerful force in the evolution of primates. The evolution of brain size and complexity in the Order Primates has been widely regarded as the hallmark of primate evolutionary history. Despite their importance to our understanding of primate evolution, the relationship between sexual selection and the evolutionary development of brain size is not well studied. The present research examines the evolutionary relationship between brain size and two components of primate sexual selection, sperm competition and male competition for mates. Results indicate that there is not a significant relationship between relative brain size and sperm competition as measured by relative testis size in primates, suggesting sperm competition has not played an important role in the evolution of brain size in the primate order. There is, however, a significant negative evolutionary relationship between relative brain size and the level of male competition for mates. The present study shows that the largest relative brain sizes among primate species are associated with monogamous mating systems, suggesting primate monogamy may require greater social acuity and abilities of deception
    corecore